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I. Beyond linearised gravity 3-Iron (빈집), 2004, Kim Ki Duk (김기덕)
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Beyond linearised gravity

gab = ḡab + hab+kab

ḡab hab
kab

Perturbation theory holds if 

Let us assume a split between a foreground and a background

In some coordinates (steady coordinates, MTW), we have

|∂aḡbc |2 ∼ | R̄abcd | ∼ |gbc | /ℛ2

|h |ab ∼ 𝒜 |g |ab

|∂ahbc | ∼ |hbc | /λ

𝒜 ≲ λ/ℛ
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Beyond linearised gravity

Plugging this into Einstein Equations, in the harmonic gauge* leads to

□ hab = 0

□ kab = 2∂(ahcd∂chb)d

If the linearised metric describes a plane wave

hab ∼ eiω(t−z)ϵab

It excites higher harmonics as it propagates

kab ∼ e2iω(t−z)⟨ϵab |∂(aϵcd∂cϵb)d⟩ + …

Isaacson (1967) 3/21



Nonlinearities abound

Early Universe — Scalar-induced GWs important to discern inflationary models

Tomita (1967) 
Baumann+ (2007)

BICEP-2
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Nonlinearities abound

Early Universe — Scalar-induced GWs important to discern inflationary models

Extreme Mass Ratio Inspirals — In band for  cycles, so  accuracy is 
needed

𝒪(ν−1) 𝒪(ν2)

Instability of anti-de Sitter — generic black hole formation from small data

Stability of trapping spacetimes — black hole mimickers, Kerr-AdS, black rings…

Black Hole Ringdown — quadratic quasinormal modes, memory, etc

4/21



II. An illustrative example Spring, Summer, Fall, Winter… and Spring (봄 여름 가을 겨울 그리고 봄) 
Kim Ki Duk (김기덕)



Instability of anti-de-Sitter

Pure AdS is generically* unstable to scalar fluctuations

Bizon+ (2011-) 
Dias+ (2012+) 

Buchel+ (2013)

T
im
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□ Φ(1) = 0□ Φ(1) = 0

∂2
xΦ(1) + (ω2 − V)Φ(1) = 0
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Instability of anti-de-Sitter

Pure AdS is generically* unstable to scalar fluctuations

Bizon+ (2011-) 
Dias+ (2012+) 

Buchel+ (2013)

T
im

e

□ Φ(1) = 0

ω2
ℓ = (3n + 1)2

Spherical symmetry

With reflective (Brown-Henneaux) boundary conditions

Φ(1) =
∞

∑
n=0

Ane−iωnten(x)

The sum of 2 frequencies is also in the spectrum!!
5/21

∂2
xΦ(1) + (ω2 − V)Φ(1) = 0



Instability of anti-de-Sitter

Back-reaction on the metric is not dynamical

Bizon+ (2011-) 
Dias+ (2012+) 

Buchel+ (2013)

ds2 = sec2 x(−Ae−2δdt2 + A−1dx2 + sin2 xdΩ2)
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Bizon+ (2011-) 
Dias+ (2012+) 

Buchel+ (2013)

∂xA(2) = f(Φ(1), Φ(1))
∂xδ(2) = f(Φ(1), Φ(1))

ds2 = sec2 x(−Ae−2δdt2 + A−1dx2 + sin2 xdΩ2)

To third order…

AdS unstable towards Kerr AdS

Φ(3) ∼ te−iωnt + …Resonance —> secular growth

6/21

∂2
xΦ(3) + (ω2 − V)Φ(3) = 𝒮(Φ(1), A(2), δ(2)) ∼ e−iωnt



Trapped waves

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Keir (2013) 
Cardoso+ (2014+) 
Cunha+ (2019) 
JRY+ (2025) 
Marks+ (2025) 

Figueras & Rossi (2023) 

7/21



Trapped waves

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Keir (2013) 
Cardoso+ (2014+) 
Cunha+ (2019) 
JRY+ (2025) 
Marks+ (2025) 

Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Figueras & Rossi (2023) 

Trapped, long-lived modes were conjectured to lead to a non-linear instability

7/21



Trapped waves

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Keir (2013),  
Cardoso+ (2014+) 
Benomio+ (2024) 
JRY+ (2025) 
Marks+ (2025) 

Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Figueras & Rossi (2023) 

□g Φ = Φ3 Φ′ ′ ℓ + (ω2 − Vℓ)Φℓ = ∑ c123
ℓ Φ1Φ2Φ3
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Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Trapped, long-lived modes were conjectured to lead to a non-linear instability

Turbulence? Yes

Instability? Unlikely

Keir (2013) 
Cardoso+ (2014+) 
Cunha+ (2019) 
JRY+ (2025) 
Marks+ (2025) 

Similar behaviour in BH mimickers, or black compact objects in higher dimensions
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Near-extremal Black Holes

Near-extremal black holes also have long-lived modes

Yang+ (2015) 
Iuliano (2024) 

Hints towards turbulent behaviour in this regime—third order couplings important

8/21

Yang+ (2015)



III. Spinors and BH Perturbations Parasite (기생충) 2023, Bong Joon Ho (봉준호)31



Spinor Formulation of GR 

Penrose (1960)

Lorentzian manifolds in 4 dimensions admit a spin structure

Λ(1,3) ≃ SL(2,ℂ)/{1 ∼ − 1}Isomorphism Λ(1,3) ≃ SL(2,ℂ)/{1 ∼ − 1}
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Spinor Formulation of GR 

Penrose (1960)

Lorentzian manifolds in 4 dimensions admit a spin structure

gab = ϵABϵA′ B′ 

{la, na, ma} = {oAoA′ , ιAιA′ , oAιA′ }

Λ(1,3) ≃ SL(2,ℂ)/{1 ∼ − 1}

Sab = Rab −
1
4

Rgab = − 2ΦABA′ B′ 
Cabcd = ΨABCDϵA′ B′ 

ϵC′ D′ 
+ c . c .R = 24Λ

Isomorphism

Metric

NP tetrad

Curvature

Algebraic classification ΨABCD = κ(1)
(A κ(2)

B κ(3)
C κ(4)

D)

Type I Type II Type D Type III Type N
9/21
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𝒪4Ψ4 + 𝒪3Ψ3 + 𝒪2Ψ2 = 0

Where 𝒪4 =

𝒪3 =

𝒪2 =

BH —> Type D —> Ψ3 = Ψ4 = κ = σ = κ′ = σ′ = 0
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Teukolsky Equation in a Nutshell

Penrose (1960) 
Stewart & Walker (1974) 
Bini+ (2002)

Bianchi identities in spinor form are just .∇AA′ ΨABCD = 0

Taking one more derivative, and commuting….  □ ΨABCD = 6ΨEF
(ABΨCD)EF

Projecting with the spin dyad  we find ιAιBιCιD × …

𝒪4Ψ4 + 𝒪3Ψ3 + 𝒪2Ψ2 = 0

Hence, linearising on type D leads to 

�̄�4δΨ4 = 0

10/21



Beyond linear order

Taking the second order variation of  leads to 𝒪4Ψ4 + 𝒪3Ψ3 + 𝒪2Ψ2 = 0
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Beyond linear order

Taking the second order variation of  leads to 𝒪4Ψ4 + 𝒪3Ψ3 + 𝒪2Ψ2 = 0

�̄�4δ2Ψ4 = − δ𝒪4δΨ4 − δ𝒪3δΨ3 ≡ 𝒮[δg, δg]

It is not sufficient to know , but we need to reconstruct δΨ4 δgab

This is easy in vacuum (CCK, Wald…)

This is not so easy in the presence of matter (but there’s been recent progress!)
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Kegeles & Cohen (1979) 
Chrzanowski (1976) 
Wald (1978) 
Aksteiner, Andersson & Backdahl (2016) 
Green, Hollands & Zimermann (2019)



IV. Quadratic QNMs Oldboy (올드보이), 2003, Park Chan-Wook (박찬욱)



Teukolsky Master Equation

Campanelli & Lousto (1998)

Solution to linear equation

δΨ4 = ∑
ℓ,m,n,σ

𝒜ℓmnσe−iωℓmnσ(t−tpeak) + …

JRY+ (2023)  
Ripley+ (2021)

�̄�4δΨ4 = 0
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Inhomogeneous solution to second order has QQNMs!

δΨ4 = ∑
ℓ,m,n,σ

𝒜ℓmnσe−iωℓmnσ(t−tpeak) + …

δ2Ψ4 = δ2Ψhom
4 + ∑

λ1,λ2
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δ2Ψ4 = δ2Ψhom
4 + ∑

λ1,λ2

𝒜λ1×λ2
e−i(ωλ1

+ωλ2
)(t−tpeak) + …

JRY+ (2023)  
Ripley+ (2021)

�̄�4δΨ4 = 0

�̄�4δ2Ψ4 = 𝒮[δg, δg]

Coupling coefficient: ℛ =
𝒜λ1×λ2

𝒜λ1
𝒜λ2
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Black Hole Ringdown

Tiglio+ (1996) 
Campanelli+ (1998) 

Ioka+ (2007) 
Brizuela+ (2008) 

London+ (2014) 
Cheung+ (2022) 
Mitman+ (2022) 

JRY+ (2023) 
Bucciotti+ (2023,25) 

Ma+ (2024) 
Yi+ (2024) 

Bourg+ (2024,25) 
Khera+ (2025) 

+++ 

Coupling coefficients depend only on (M, J)
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Ioka+ (2007) 
Brizuela+ (2008) 

London+ (2014) 
Cheung+ (2022) 
Mitman+ (2022) 

JRY+ (2023) 
Bucciotti+ (2023,25) 

Ma+ (2024) 
Yi+ (2024) 

Bourg+ (2024,25) 
Khera+ (2025) 

+++ 

What happens at high frequencies?

Coupling coefficients depend only on (M, J)
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V. Nonlinearities in plane waves Decision to Leave (헤어질 결심), 
2022, Park Chan-Wook (박찬욱)



Plane waves in gravity

Recall that the curvature satisfies a nonlinear wave equation

□ ΨABCD = 6ΨEF
(ABΨCD)EF

Penrose (1965) 14/21



Plane waves in gravity

Recall that the curvature satisfies a nonlinear wave equation

pp-waves are exact solutions where the RHS vanishes!

□ ΨABCD = 0

□ ΨABCD = 6ΨEF
(ABΨCD)EF

Penrose (1965) 14/21



Plane waves in gravity

Recall that the curvature satisfies a nonlinear wave equation

pp-waves are exact solutions where the RHS vanishes!

□ ΨABCD = 0

Plane waves are pp-waves which are symmetric

ds2 = 2dudv − H(u)IJzIzJdu2 − dx2 − dy2 , zI = (x, y)

□ ΨABCD = 6ΨEF
(ABΨCD)EF

Penrose (1965) 14/21



Zooming into a geodesic

Penrose (1965) 
Blau (2011)

γ(u)

Choosing coordinates adapted to a null geodesic, and zooming in, spacetime 
becomes a plane wave

x y
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ds2 = 2dudv − RIuJu(u)zIzJdu2 − dx2 − dy2

Choosing coordinates adapted to a null geodesic, and zooming in, spacetime 
becomes a plane wave

Doing so at the (equatorial) light ring, we find an homogeneous plane wave

ds2 = 2dudv − Ω2
LR(y2 − x2)du2 − dx2 − dy2

x y
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QNMs from plane waves

Fransen (2023)

ds2 = 2dudv − Ω2
LR(y2 − x2)du2 − dx2 − dy2+ ·gabdxadxb

Linear perturbations around homogeneous plane wave

16/21



QNMs from plane waves

Fransen (2023)

ds2 = 2dudv − Ω2
LR(y2 − x2)du2 − dx2 − dy2+ ·gabdxadxb

Linear perturbations around homogeneous plane wave

The previous derivation holds for  (aligned with the repeated PND)Ψ0

�̄�0δΨ0 = 0

16/21
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Fransen (2023)

ds2 = 2dudv − Ω2
LR(y2 − x2)du2 − dx2 − dy2+ ·gabdxadxb

Solutions are analytical: 

 δΨ0 = e−ipuue−ipvve−|pv|Ω2/2(x2−iy2)Hnx( Ω |pv | x)Hny( −iΩpvy)
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QNMs from plane waves

Fransen (2023)

Impose boundary conditions: 
• Periodic in the  direction 
• Unstable in the  direction

x
y
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Identify the frequencies of a Kerr BH in the high frequency limit

pu = ωℓmn , pv = mΩ , nx = ℓ − |m | , ny = n
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Vacuum solution—can use CCK to reconstruct the metric

δg = 𝒮†[ΨH] where �̄�0ΨH = 0

Teukolsky—Starobinsky identities in (homogeneous) plane waves

Source term given uniquely in terms of Hertz potential

(i = 0,…,4)
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Fix a geodesic + radiation gauge —  invariant up to second orderδ2Ψ0

 is well-defined, and measures curvature fluctuations at the lightring!  δ2Ψ0

δ2Ψ0 = (δ2Ψ0)hom. + ∑
λ1,λ2,λ

𝒜λ
λ1×λ2

ψλ , λ = (pu, pv, nx, ny)

Define coupling coefficients / nonlinear ratios (at the lightring) 

ℛλ
λ1×λ2

=
𝒜λ

λ1×λ2

𝒜λ1
𝒜λ2



QQNMs from plane waves

Fransen, Pereñiguez & JRY (upcoming!)

Ratios can be computed analytically! Stay tuned for results 
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VI. Conclusions



Conclusions

✤ Studying the back-reaction of perturbations is important in a number of contexts 

✤ Important theoretical & mathematical consequences (stability of AdS, Kerr…) 

✤ Non-linear dynamical effects will be observed (SIGW, QQNMS, memory…)  

✤ New methods are needed to push beyond vacuum second order 

✤ Type N (Homogeneous plane waves) might shed light on high frequency GWs  

✤ Ultimate goal: Black Hole spacetimes + realistic matter fields 
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