Nonlinear effects in perturbation theory

Jaime Redondo-Yuste

IBS, Daejeon, Korea

Outline

1.	Beyond	linearised	gravity

- 2. An illustrative example
- 3. Spinors and black hole perturbations
- 4. Nonlinearities in plane waves
- 5. Take-aways

Let us assume a split between a foreground and a background

$$g_{ab} = \bar{g}_{ab} + h_{ab} + k_{ab}$$

Let us assume a split between a foreground and a background

$$g_{ab} = \bar{g}_{ab} + h_{ab} + k_{ab}$$

In some coordinates (steady coordinates, MTW), we have

$$|\partial_a \bar{g}_{bc}|^2 \sim |\bar{R}_{abcd}| \sim |g_{bc}|/\mathcal{R}^2$$

$$|h|_{ab} \sim \mathcal{A}|g|_{ab}$$

$$|\partial_a h_{bc}| \sim |h_{bc}|/\lambda$$

Let us assume a split between a foreground and a background

$$g_{ab} = \bar{g}_{ab} + h_{ab} + k_{ab}$$

In some coordinates (steady coordinates, MTW), we have

Let us assume a split between a foreground and a background

$$g_{ab} = \bar{g}_{ab} + h_{ab} + k_{ab}$$

In some coordinates (steady coordinates, MTW), we have

Perturbation theory holds if $\mathcal{A} \lesssim \lambda/\mathcal{R}$

Plugging this into Einstein Equations, in the *harmonic gauge** leads to

$$\Box h_{ab} = 0$$

$$\Box k_{ab} = 2\partial_{(a}h^{cd}\partial_{c}h_{b)d}$$

Plugging this into Einstein Equations, in the harmonic gauge* leads to

$$\Box h_{ab} = 0$$

$$\Box k_{ab} = 2\partial_{(a}h^{cd}\partial_{c}h_{b)d}$$

If the linearised metric describes a plane wave

$$h_{ab} \sim e^{i\omega(t-z)} \epsilon_{ab}$$

Plugging this into Einstein Equations, in the harmonic gauge* leads to

$$\Box h_{ab} = 0$$

$$\Box k_{ab} = 2\partial_{(a}h^{cd}\partial_{c}h_{b)d}$$

If the linearised metric describes a plane wave

$$h_{ab} \sim e^{i\omega(t-z)} \epsilon_{ab}$$

It excites *higher harmonics* as it propagates

$$k_{ab} \sim e^{2i\omega(t-z)} \langle \epsilon_{ab} | \partial_{(a} \epsilon^{cd} \partial_{c} \epsilon_{b)d} \rangle + \dots$$

Nonlinearities abound

Early Universe — Scalar-induced GWs important to discern inflationary models

Nonlinearities abound

Extreme Mass Ratio Inspirals — In band for $\mathcal{O}(\nu^{-1})$ cycles, so $\mathcal{O}(\nu^2)$ accuracy is needed

Wardell+ (2023) 4/21

Nonlinearities abound

Instability of anti-de Sitter — generic black hole formation from small data

Stability of trapping spacetimes — black hole mimickers, Kerr-AdS, black rings...

Black Hole Ringdown — quadratic quasinormal modes, memory, etc

II. An illustrative example

Spring, Summer, Fall, Winter… and Spring (봄 여름 가을 겨울 그리고 봄) Kim Ki Duk (김기덕)

Pure AdS is generically* *unstable* to scalar fluctuations

$$\Box \Phi^{(1)} = 0$$

$$\partial_x^2 \Phi^{(1)} + (\omega^2 - V) \Phi^{(1)} = 0$$

Pure AdS is generically* *unstable* to scalar fluctuations

$$\Box \Phi^{(1)} = 0$$

$$\partial_x^2 \Phi^{(1)} + (\omega^2 - V)\Phi^{(1)} = 0$$
 Spherical symmetry

With reflective (Brown-Henneaux) boundary conditions

$$\Phi^{(1)} = \sum_{n=0}^{\infty} A_n e^{-i\omega_n t} e_n(x)$$

Pure AdS is generically* *unstable* to scalar fluctuations

$$\Box \Phi^{(1)} = 0$$

$$\partial_x^2 \Phi^{(1)} + (\omega^2 - V)\Phi^{(1)} = 0$$
 Spherical symmetry

With reflective (Brown-Henneaux) boundary conditions

$$\Phi^{(1)} = \sum_{n=0}^{\infty} A_n e^{-i\omega_n t} e_n(x)$$

$$\omega_{\ell}^2 = (3n+1)^2$$

Buchel+ (2013)

Back-reaction on the metric is not dynamical

$$ds^{2} = \sec^{2} x \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x d\Omega^{2} \right)$$

Back-reaction on the metric is not dynamical

$$ds^{2} = \sec^{2} x \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x d\Omega^{2} \right)$$
$$\partial_{x} A^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$
$$\partial_{x} \delta^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$

Back-reaction on the metric is not dynamical

$$ds^{2} = \sec^{2} x \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x d\Omega^{2} \right)$$
$$\partial_{x} A^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$
$$\partial_{x} \delta^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$

To third order...

$$\partial_{x}^{2}\Phi^{(3)} + (\omega^{2} - V)\Phi^{(3)} = \mathcal{S}(\Phi^{(1)}, A^{(2)}, \delta^{(2)}) \sim e^{-i\omega_{n}t}$$

Back-reaction on the metric is not dynamical

$$ds^{2} = \sec^{2} x \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x d\Omega^{2} \right)$$
$$\partial_{x} A^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$
$$\partial_{x} \delta^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$

To third order...

$$\partial_x^2 \Phi^{(3)} + (\omega^2 - V)\Phi^{(3)} = \mathcal{S}(\Phi^{(1)}, A^{(2)}, \delta^{(2)}) \sim e^{-i\omega_n t}$$

Resonance —> secular growth

$$\Phi^{(3)} \sim t e^{-i\omega_n t} + \dots$$

Back-reaction on the metric is not dynamical

$$ds^{2} = \sec^{2} x \left(-Ae^{-2\delta} dt^{2} + A^{-1} dx^{2} + \sin^{2} x d\Omega^{2} \right)$$
$$\partial_{x} A^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$
$$\partial_{x} \delta^{(2)} = f(\Phi^{(1)}, \Phi^{(1)})$$

To third order...

$$\partial_x^2 \Phi^{(3)} + (\omega^2 - V)\Phi^{(3)} = \mathcal{S}(\Phi^{(1)}, A^{(2)}, \delta^{(2)}) \sim e^{-i\omega_n t}$$

Resonance —> secular growth

$$\Phi^{(3)} \sim t e^{-i\omega_n t} + \dots$$

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Keir (2013) Cardoso+ (2014+) Cunha+ (2019) JRY+ (2025) Marks+ (2025)

JRY+ (2025)

Marks+ (2025)

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Trapped, long-lived modes were conjectured to lead to a *non-linear instability*

Keir (2013) Cardoso+ (2014+) Cunha+ (2019)

7/21

Figueras & Rossi (2023)

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Trapped, long-lived modes were conjectured to lead to a *non-linear instability*

$$\Box_g \Phi = \Phi^3$$

$$\Phi_{\ell}'' + (\omega^2 - V_{\ell})\Phi_{\ell} = \sum c_{\ell}^{123}\Phi_1\Phi_2\Phi_3$$

Figueras & Rossi (2023)

Keir (2013), Cardoso+ (2014+) Benomio+ (2024) JRY+ (2025) Marks+ (2025)

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Trapped, long-lived modes were conjectured to lead to a *non-linear instability*

Turbulence? Yes

Instability? Unlikely

Keir (2013) Cardoso+ (2014+) Cunha+ (2019) JRY+ (2025) Marks+ (2025)

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Trapped, long-lived modes were conjectured to lead to a *non-linear instability*

Turbulence? Yes

Instability? Unlikely

Keir (2013) Cardoso+ (2014+) Cunha+ (2019) JRY+ (2025) Marks+ (2025)

Near-extremal Black Holes

Near-extremal black holes also have long-lived modes

Hints towards turbulent behaviour in this regime—third order couplings important

Yang+ (2015) Iuliano (2024)

8/21

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism

$$\Lambda(1,3) \simeq SL(2,\mathbb{C})/\{1 \sim -1\}$$

9/21

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism

$$\Lambda(1,3) \simeq SL(2,\mathbb{C})/\{1 \sim -1\}$$

Metric

$$g_{ab} = \epsilon_{AB} \epsilon_{A'B'}$$

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism

$$\Lambda(1,3) \simeq SL(2,\mathbb{C})/\{1 \sim -1\}$$

Metric

$$g_{ab} = \epsilon_{AB} \epsilon_{A'B'}$$

NP tetrad

$$\{l^a, n^a, m^a\} = \{o^A o^{A'}, \iota^A \iota^{A'}, o^A \iota^{A'}\}$$

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism

$$\Lambda(1,3) \simeq SL(2,\mathbb{C})/\{1 \sim -1\}$$

Metric

$$g_{ab} = \epsilon_{AB} \epsilon_{A'B'}$$

NP tetrad

$$\{l^a, n^a, m^a\} = \{o^A o^{A'}, \iota^A \iota^{A'}, o^A \iota^{A'}\}$$

Curvature

$$R = 24\Lambda$$
 $S_{ab} = R_{ab} - \frac{1}{4}Rg_{ab} = -2\Phi_{ABA'B'}$ $C_{abcd} = \Psi_{ABCD}\epsilon_{A'B'}\epsilon_{C'D'} + c.c.$

$$C_{abcd} = \Psi_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + c.c.$$

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism

$$\Lambda(1,3) \simeq SL(2,\mathbb{C})/\{1 \sim -1\}$$

Metric

$$g_{ab} = \epsilon_{AB} \epsilon_{A'B'}$$

NP tetrad

$$\{l^a, n^a, m^a\} = \{o^A o^{A'}, \iota^A \iota^{A'}, o^A \iota^{A'}\}$$

Curvature

$$R = 24\Lambda$$

$$S_{ab} = R_{ab} - \frac{1}{4} R g_{ab} = -2 \Phi_{ABA'B'}$$
 $C_{abcd} = \Psi_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + \text{c.c.}$

$$C_{abcd} = \Psi_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + c.c.$$

Algebraic classification

$$\Psi_{ABCD} = \kappa_{(A}^{(1)} \kappa_{B}^{(2)} \kappa_{C}^{(3)} \kappa_{D)}^{(4)}$$

Spinor Formulation of GR

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism

$$\Lambda(1,3) \simeq SL(2,\mathbb{C})/\{1 \sim -1\}$$

Metric

$$g_{ab} = \epsilon_{AB} \epsilon_{A'B'}$$

NP tetrad

$$\{l^a, n^a, m^a\} = \{o^A o^{A'}, \iota^A \iota^{A'}, o^A \iota^{A'}\}$$

Curvature

$$R = 24\Lambda$$

$$S_{ab} = R_{ab} - \frac{1}{4}Rg_{ab} = -2\Phi_{ABA'B'} \qquad C_{abcd} = \Psi_{ABCD}\epsilon_{A'B'}\epsilon_{C'D'} + c.c.$$

$$C_{abcd} = \Psi_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + c.c.$$

Algebraic classification

$$\Psi_{ABCD} = \kappa_{(A}^{(1)} \kappa_{B}^{(2)} \kappa_{C}^{(3)} \kappa_{D)}^{(4)}$$

Type N

Bianchi identities in spinor form are just $\nabla^{AA'}\Psi_{ABCD}=0$.

Bianchi identities in spinor form are just $\nabla^{AA'}\Psi_{ABCD}=0$.

Taking one more derivative, and commuting.... $\Box \Psi_{ABCD} = 6 \Psi_{(AB}^{EF} \Psi_{CD)EF}$

Bianchi identities in spinor form are just $\nabla^{AA'}\Psi_{ABCD}=0$.

Taking one more derivative, and commuting... $\Box \Psi_{ABCD} = 6 \Psi_{(AB}^{EF} \Psi_{CD)EF}$

Projecting with the spin dyad $\iota^A \iota^B \iota^C \iota^D \times \dots$ we find

$$\mathcal{O}_4\Psi_4 + \mathcal{O}_3\Psi_3 + \mathcal{O}_2\Psi_2 = 0$$

Bianchi identities in spinor form are just $\nabla^{AA'}\Psi_{ABCD}=0$.

Taking one more derivative, and commuting.... $\Box \Psi_{ABCD} = 6 \Psi^{EF}_{(AB} \Psi_{CD)EF}$

Projecting with the spin dyad $\iota^A \iota^B \iota^C \iota^D \times \dots$ we find

$$\mathcal{O}_4\Psi_4 + \mathcal{O}_3\Psi_3 + \mathcal{O}_2\Psi_2 = 0$$

Where

$$\mathcal{O}_4 = [\mathbf{P'P} - \delta'\delta - (4\rho' + \overline{\rho}')\mathbf{P} - \rho\mathbf{P'} + (4\tau' + \overline{\tau})\delta + \tau\delta' + 4\rho\rho' - 4\tau\tau' - 2\psi_2]$$

$$\mathcal{O}_3 = \left[4P\kappa' - 4\delta\sigma' - 4(\bar{\rho} - 2\rho)\kappa' + 4(\bar{\tau} - 2\tau)\sigma' + 10\psi_3\right]$$

$$\mathcal{O}_4 = \left[-4\sigma' \mathbf{P}' + 4\kappa' \eth' - 12\kappa' \tau' + 12\rho' \sigma' \right]$$

Bianchi identities in spinor form are just $\nabla^{AA'}\Psi_{ABCD}=0$.

Taking one more derivative, and commuting... $\Box \Psi_{ABCD} = 6\Psi_{(AB)}^{EF}\Psi_{CD)EF}$

Projecting with the spin dyad $\iota^A \iota^B \iota^C \iota^D \times ...$ we find

$$\mathcal{O}_4\Psi_4 + \mathcal{O}_3\Psi_3 + \mathcal{O}_2\Psi_2 = 0$$

Where

$$\mathcal{O}_4 = [\mathbf{P'P} - \delta'\delta - (4\rho' + \overline{\rho}')\mathbf{P} - \rho\mathbf{P'} + (4\tau' + \overline{\tau})\delta + \tau\delta' + 4\rho\rho' - 4\tau\tau' - 2\psi_2]$$

$$\mathcal{O}_{3} = [4\mathbf{P}\kappa' - 4\delta\sigma'' - 4(\bar{\rho} - 2\rho)\kappa' + 4(\bar{\tau} - 2\tau)\sigma' + 10\psi_{3}]$$

$$\mathcal{O}_{2} = [-4\sigma'\mathbf{P}' + 4\kappa'\delta' - 12\kappa'\tau' + 12\rho'\sigma']$$

$$\mathcal{O}_2 = \left[-4\sigma' \mathbf{P}' + 4\kappa' \delta' - 12\kappa' \tau' + 12\rho' \sigma' \right]$$

BH —> **Type D** —>
$$\Psi_3 = \Psi_4 = \kappa = \sigma = \kappa' = \sigma' = 0$$

Bianchi identities in spinor form are just $\nabla^{AA'}\Psi_{ABCD}=0$.

Taking one more derivative, and commuting... $\Box \Psi_{ABCD} = 6 \Psi^{EF}_{(AB} \Psi_{CD)EF}$

Projecting with the spin dyad $\iota^A \iota^B \iota^C \iota^D \times \dots$ we find

$$\mathcal{O}_4\Psi_4 + \mathcal{O}_3\Psi_3 + \mathcal{O}_2\Psi_2 = 0$$

Hence, linearising on type D leads to

$$\bar{\mathcal{O}}_4 \delta \Psi_4 = 0$$

Taking the second order variation of $\mathcal{O}_4\Psi_4+\mathcal{O}_3\Psi_3+\mathcal{O}_2\Psi_2=0$ leads to

$$\bar{\mathcal{O}}_4 \delta^2 \Psi_4 = -\delta \mathcal{O}_4 \delta \Psi_4 - \delta \mathcal{O}_3 \delta \Psi_3 \equiv \mathcal{S}[\delta g, \delta g]$$

Taking the second order variation of $\mathcal{O}_4\Psi_4+\mathcal{O}_3\Psi_3+\mathcal{O}_2\Psi_2=0$ leads to

$$\bar{\mathcal{O}}_4 \delta^2 \Psi_4 = -\delta \mathcal{O}_4 \delta \Psi_4 - \delta \mathcal{O}_3 \delta \Psi_3 \equiv \mathcal{S}[\delta g, \delta g]$$

It is not sufficient to know $\delta\Psi_4$, but we need to reconstruct δg_{ab}

Taking the second order variation of $\mathcal{O}_4\Psi_4+\mathcal{O}_3\Psi_3+\mathcal{O}_2\Psi_2=0$ leads to

$$\bar{\mathcal{O}}_4 \delta^2 \Psi_4 = -\delta \mathcal{O}_4 \delta \Psi_4 - \delta \mathcal{O}_3 \delta \Psi_3 \equiv \mathcal{S}[\delta g, \delta g]$$

It is not sufficient to know $\delta\Psi_4$, but we need to reconstruct δg_{ab}

This is easy in vacuum (CCK, Wald...)

Taking the second order variation of $\mathcal{O}_4\Psi_4+\mathcal{O}_3\Psi_3+\mathcal{O}_2\Psi_2=0$ leads to

$$\bar{\mathcal{O}}_4 \delta^2 \Psi_4 = -\delta \mathcal{O}_4 \delta \Psi_4 - \delta \mathcal{O}_3 \delta \Psi_3 \equiv \mathcal{S}[\delta g, \delta g]$$

It is not sufficient to know $\delta\Psi_4$, but we need to reconstruct δg_{ab}

This is easy in vacuum (CCK, Wald...)

This is not so easy in the presence of matter (but there's been recent progress!)

Teukolsky Master Equation

Solution to linear equation $\bar{\mathcal{O}}_4 \delta \Psi_4 = 0$

$$\delta \Psi_4 = \sum_{\ell,m,n,\sigma} \mathcal{A}_{\ell m n \sigma} e^{-i\omega_{\ell m n \sigma}(t - t_{\text{peak}})} + \dots$$

Teukolsky Master Equation

Solution to linear equation $\bar{\mathcal{O}}_4 \delta \Psi_4 = 0$

$$\delta\Psi_4 = \sum_{\ell,m,n,\sigma} \mathcal{A}_{\ell mn\sigma} e^{-i\omega_{\ell mn\sigma}(t-t_{\text{peak}})} + \dots$$

Inhomogeneous solution to second order has QQNMs!

$$\bar{\mathcal{O}}_4 \delta^2 \Psi_4 = \mathcal{S}[\delta g, \delta g]$$

$$\delta^{2}\Psi_{4} = \delta^{2}\Psi_{4}^{\text{hom}} + \sum_{\lambda_{1},\lambda_{2}} \mathscr{A}_{\lambda_{1}\times\lambda_{2}} e^{-i(\omega_{\lambda_{1}}+\omega_{\lambda_{2}})(t-t_{\text{peak}})} + \dots$$

Teukolsky Master Equation

Solution to linear equation $\bar{\mathcal{O}}_4 \delta \Psi_4 = 0$

$$\delta \Psi_4 = \sum_{\ell,m,n,\sigma} \mathcal{A}_{\ell m n \sigma} e^{-i\omega_{\ell m n \sigma}(t - t_{\text{peak}})} + \dots$$

Inhomogeneous solution to second order has QQNMs!

$$\bar{\mathcal{O}}_4 \delta^2 \Psi_4 = \mathcal{S}[\delta g, \delta g]$$

$$\delta^{2}\Psi_{4} = \delta^{2}\Psi_{4}^{\text{hom}} + \sum_{\lambda_{1},\lambda_{2}} \mathcal{A}_{\lambda_{1}\times\lambda_{2}} e^{-i(\omega_{\lambda_{1}}+\omega_{\lambda_{2}})(t-t_{\text{peak}})} + \dots$$

Coupling coefficient:
$$\mathcal{R} = \frac{\mathcal{A}_{\lambda_1 \times \lambda_2}}{\mathcal{A}_{\lambda_1} \mathcal{A}_{\lambda_2}}$$

Black Hole Ringdown

Coupling coefficients depend only on (M,J)

Tiglio+ (1996) Campanelli+ (1998)

loka+ (2007)

Brizuela+ (2008)

London+ (2014)

Cheung+ (2022)

Mitman+ (2022)

JRY+ (2023)

Bucciotti+ (2023,25)

Ma+ (2024)

Yi+ (2024)

Bourg+ (2024,25)

Khera+ (2025)

13/21

Black Hole Ringdown

Coupling coefficients depend only on (M, J)

What happens at high frequencies?

Bucciotti+ (2023,25)

Ma+ (2024)

Yi+ (2024)

Bourg+ (2024,25)

Khera+ (2025)

13/21

++-

Plane waves in gravity

Recall that the curvature satisfies a *nonlinear wave equation*

$$\Box \Psi_{ABCD} = 6\Psi_{(AB}^{EF}\Psi_{CD)EF}$$

Penrose (1965) 14/21

Plane waves in gravity

Recall that the curvature satisfies a *nonlinear wave equation*

$$\Box \Psi_{ABCD} = 6\Psi_{(AB}^{EF}\Psi_{CD)EF}$$

pp-waves are exact solutions where the RHS vanishes!

$$\Box \Psi_{ABCD} = 0$$

Penrose (1965) 14/21

Plane waves in gravity

Recall that the curvature satisfies a nonlinear wave equation

$$\Box \Psi_{ABCD} = 6\Psi_{(AB}^{EF}\Psi_{CD)EF}$$

pp-waves are exact solutions where the RHS vanishes!

$$\square \Psi_{ABCD} = 0$$

Plane waves are pp-waves which are symmetric

$$ds^2 = 2dudv - H(u)_{IJ}z^Iz^Jdu^2 - dx^2 - dy^2, z^I = (x, y)$$

Penrose (1965) 14/21

Zooming into a geodesic

Choosing coordinates adapted to a *null geodesic*, and zooming in, spacetime becomes a plane wave

Zooming into a geodesic

Choosing coordinates adapted to a *null geodesic*, and zooming in, spacetime becomes a plane wave

$$ds^{2} = 2dudv - R_{IuJu}(u)z^{I}z^{J}du^{2} - dx^{2} - dy^{2}$$

Doing so at the (equatorial) *light ring*, we find an homogeneous plane wave

Zooming into a geodesic

Choosing coordinates adapted to a *null geodesic*, and zooming in, spacetime becomes a plane wave

Doing so at the (equatorial) *light ring*, we find an homogeneous plane wave

$$ds^{2} = 2dudv - \Omega_{LR}^{2}(y^{2} - x^{2})du^{2} - dx^{2} - dy^{2}$$

Linear perturbations around homogeneous plane wave

$$ds^{2} = 2dudv - \Omega_{LR}^{2}(y^{2} - x^{2})du^{2} - dx^{2} - dy^{2} + \dot{g}_{ab}dx^{a}dx^{b}$$

Fransen (2023) 16/21

Linear perturbations around homogeneous plane wave

$$ds^{2} = 2dudv - \Omega_{LR}^{2}(y^{2} - x^{2})du^{2} - dx^{2} - dy^{2} + \dot{g}_{ab}dx^{a}dx^{b}$$

The previous derivation holds for Ψ_0 (aligned with the repeated PND)

$$\bar{\mathcal{O}}_0 \delta \Psi_0 = 0$$

Fransen (2023) 16/21

Linear perturbations around homogeneous plane wave

$$ds^{2} = 2dudv - \Omega_{LR}^{2}(y^{2} - x^{2})du^{2} - dx^{2} - dy^{2} + \dot{g}_{ab}dx^{a}dx^{b}$$

The previous derivation holds for Ψ_0 (aligned with the repeated PND)

$$\bar{\mathcal{O}}_0 \delta \Psi_0 = 0$$

Solutions are analytical:

$$\delta \Psi_0 = e^{-ip_u u} e^{-ip_v v} e^{-|p_v|\Omega^2/2(x^2 - iy^2)} H_{n_x} \left(\sqrt{\Omega |p_v| x} \right) H_{n_y} \left(\sqrt{-i\Omega p_v y} \right)$$

Fransen (2023) 16/21

$$\delta \Psi_0 = e^{-ip_u u} e^{-ip_v v} e^{-|p_v|\Omega^2/2(x^2 - iy^2)} H_{n_x} \left(\sqrt{\Omega |p_v|} x \right) H_{n_y} \left(\sqrt{-i\Omega p_v} y \right)$$

Fransen (2023) 17/21

$$\delta \Psi_0 = e^{-ip_u u} e^{-ip_v v} e^{-|p_v|\Omega^2/2(x^2 - iy^2)} H_{n_x} \left(\sqrt{\Omega |p_v|} x \right) H_{n_y} \left(\sqrt{-i\Omega p_v} y \right)$$

Impose boundary conditions:

- Periodic in the x direction
- Unstable in the y direction

Fransen (2023) 17/21

$$\delta \Psi_0 = e^{-ip_u u} e^{-ip_v v} e^{-|p_v|\Omega^2/2(x^2 - iy^2)} H_{n_x} \left(\sqrt{\Omega |p_v| x} \right) H_{n_y} \left(\sqrt{-i\Omega p_v} y \right)$$

Impose boundary conditions:

- Periodic in the x direction
- Unstable in the y direction

$$\Omega^{-1}p_u = n_x + \frac{1}{2} + i\left(n_y + \frac{1}{2}\right)$$

17/21 Fransen (2023)

$$\delta \Psi_0 = e^{-ip_u u} e^{-ip_v v} e^{-|p_v|\Omega^2/2(x^2 - iy^2)} H_{n_x} \left(\sqrt{\Omega |p_v| x} \right) H_{n_y} \left(\sqrt{-i\Omega p_v} y \right)$$

Impose boundary conditions:

- Periodic in the x direction
- Unstable in the y direction

$$\Omega^{-1}p_u = n_x + \frac{1}{2} + i\left(n_y + \frac{1}{2}\right)$$

Identify the frequencies of a Kerr BH in the high frequency limit

$$p_u = \omega_{\ell mn}, p_v = m\Omega, n_x = \ell - |m|, n_y = n$$

Fransen (2023) 17/21

Carry the same calculation up to second order, $\bar{\mathcal{O}}_0\delta^2\Psi_0=\mathcal{S}[\delta g,\delta g]$

Carry the same calculation up to second order, $\bar{\mathcal{O}}_0\delta^2\Psi_0=\mathcal{S}[\delta g,\delta g]$

Vacuum solution—can use CCK to reconstruct the metric

$$\delta g = \mathcal{S}^{\dagger}[\Psi_H]$$

where

$$\bar{\mathcal{O}}_0 \Psi_H = 0$$

Carry the same calculation up to second order, $\bar{\mathcal{O}}_0 \delta^2 \Psi_0 = \mathcal{S}[\delta g, \delta g]$

Vacuum solution—can use CCK to reconstruct the metric

$$\delta g = \mathcal{S}^{\dagger}[\Psi_H]$$
 where

$$\bar{\mathcal{O}}_0 \Psi_H = 0$$

Teukolsky—Starobinsky identities in (homogeneous) plane waves

$$\dot{\Psi}_i = -\frac{1}{2} \eth^i \mathbf{b}^{4-i} \bar{\Psi}_H$$
 $(i = 0,...,4)$

$$b^m \eth'^{4-m} \dot{\Psi}_n = b^{4-n} \eth'^n \dot{\Psi}_{4-m}, \quad (0 \le m, n \le 4)$$

Carry the same calculation up to second order, $\bar{\mathcal{O}}_0 \delta^2 \Psi_0 = \mathcal{S}[\delta g, \delta g]$

Vacuum solution—can use CCK to reconstruct the metric

$$\delta g = \mathcal{S}^{\dagger}[\Psi_H]$$
 where

$$\bar{\mathcal{O}}_0 \Psi_H = 0$$

Teukolsky—Starobinsky identities in (homogeneous) plane waves

$$\dot{\Psi}_i = -\frac{1}{2} \eth^i \mathbf{b}^{4-i} \bar{\Psi}_H$$
 $(i = 0,...,4)$

$$b^m \eth'^{4-m} \dot{\Psi}_n = b^{4-n} \eth'^n \dot{\Psi}_{4-m}, \quad (0 \le m, n \le 4)$$

Source term given uniquely in terms of Hertz potential

Particular solution to the 2nd order Teukolsky equation can be found analytically!

$$\bar{\mathcal{O}}_0 \delta^2 \Psi_0 = \mathcal{S}[\delta g, \delta g]$$

Particular solution to the 2nd order Teukolsky equation can be found analytically!

$$\bar{\mathcal{O}}_0 \delta^2 \Psi_0 = \mathcal{S}[\delta g, \delta g]$$

Fix a $\emph{geodesic}$ + $\emph{radiation}$ gauge — $\delta^2\Psi_0$ invariant up to second order

Particular solution to the 2nd order Teukolsky equation can be found analytically!

$$\bar{\mathcal{O}}_0 \delta^2 \Psi_0 = \mathcal{S}[\delta g, \delta g]$$

Fix a $\emph{geodesic}$ + $\emph{radiation}$ gauge — $\delta^2 \Psi_0$ invariant up to second order

 $\delta^2\Psi_0$ is well-defined, and measures curvature fluctuations at the lightring!

$$\delta^{2}\Psi_{0} = (\delta^{2}\Psi_{0})_{\text{hom.}} + \sum_{\lambda_{1},\lambda_{2},\lambda} \mathcal{A}_{\lambda_{1}\times\lambda_{2}} \psi_{\lambda}, \qquad \lambda = (p_{u}, p_{v}, n_{x}, n_{y})$$

Particular solution to the 2nd order Teukolsky equation can be found analytically!

$$\bar{\mathcal{O}}_0 \delta^2 \Psi_0 = \mathcal{S}[\delta g, \delta g]$$

Fix a $\emph{geodesic}$ + $\emph{radiation}$ gauge — $\delta^2 \Psi_0$ invariant up to second order

 $\delta^2\Psi_0$ is well-defined, and measures curvature fluctuations at the lightring!

$$\delta^{2}\Psi_{0} = (\delta^{2}\Psi_{0})_{\text{hom.}} + \sum_{\lambda_{1},\lambda_{2},\lambda} \mathcal{A}_{\lambda_{1}\times\lambda_{2}}^{\lambda} \psi_{\lambda}, \qquad \lambda = (p_{u}, p_{v}, n_{x}, n_{y})$$

Define coupling coefficients / nonlinear ratios (at the lightring)

$$\mathcal{R}^{\lambda}_{\lambda_{1} \times \lambda_{2}} = \frac{\mathcal{A}^{\lambda}_{\lambda_{1} \times \lambda_{2}}}{\mathcal{A}_{\lambda_{1}} \mathcal{A}_{\lambda_{2}}}$$

Ratios can be computed analytically! Stay tuned for results

$$\mathcal{R}^{(2p_{u},p_{v}+\tilde{p}_{v},0,0)}_{(p_{v},0,0)\times(\tilde{p}_{v},0,0)} = \frac{ip_{v}}{8\tilde{p}_{v}^{3}} + \frac{57i}{16p_{v}\tilde{p}_{v}} - \frac{9i}{8p_{v}^{2}} + \mathcal{O}(p_{v}^{-2})$$

Conclusions

- Studying the back-reaction of perturbations is important in a number of contexts
- Particular Important theoretical & mathematical consequences (stability of AdS, Kerr...)
- Non-linear dynamical effects will be observed (SIGW, QQNMS, memory...)
- New methods are needed to push beyond vacuum second order
- Type N (Homogeneous *plane waves*) might shed light on high frequency GWs
- Ultimate goal: *Black Hole* spacetimes + realistic *matter* fields