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Beyond linearised gravity

Let us assume a split between a foreground and a background

Sab — gab + hab_l_kab
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Beyond linearised gravity

Let us assume a split between a foreground and a background
Sab = gab T hab_l_kab
In some coordinates (steady coordinates, MTW), we have

‘éiﬁgbc‘zrnu |j? dl ~ ‘éﬂﬁ:l/éagz

abc

[h], ~ A8

‘aahbc‘ ~ ‘hbc‘//1

Perturbation theory holds if & S A/R
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Beyond linearised gravity

Plugging this into Einstein Equations, in the harmonic gauge* leads to

Dhab=0

I:I kab — Za(athachb)d

Isaacson (1967) 3/21



Beyond linearised gravity

Plugging this into Einstein Equations, in the harmonic gauge* leads to

Dhab — O
— cd
[k, = Za(ah 0Chb>d
If the linearised metric describes a plane wave
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Beyond linearised gravity

Plugging this into Einstein Equations, in the harmonic gauge* leads to

I:I hab — O
— cd
[k, = 2a(ah achb)d
If the linearised metric describes a plane wave
hab ™~ eiw(t_Z)Gab
It excites higher harmonics as it propagates

k, ~ e*®=D(e | 6(a€"ddceb)d) + ...

A

Isaacson (1967) 3/21



Nonlinearities abound

Early Universe — Scalar-induced GWs important to discern inflationary models

History of the Universe
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Nonlinearities abound

— Scalar-induced GWs important to discern inflationary models

— In band for O(v~Y) cycles, so O?) accuracy is
needed

Instability of anti-de Sitter — generic black hole formation from small data
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Nonlinearities abound

Early Universe — Scalar-induced GWs important to discern inflationary models

Extreme Mass Ratio Inspirals — In band for O(v~!) cycles, so O(v?) accuracy is
needed

Instability of anti-de Sitter — generic black hole formation from small data

Stability of trapping spacetimes — black hole mimickers, Kerr-AdS, black rings...

Black Hole Ringdown — quadratic quasinormal modes, memory, etc

4/21



[I. An illustrative example
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Time

Instability of anti-de-Sitter

Pure AdS is generically* unstable to scalar fluctuations

oM =0

0*0 V) + (w? - V)®D =0

Bizon+ (2011-)
Dias+ (2012+)
5/21 Buchel+ (2013)
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Instability of anti-de-Sitter

Pure AdS is generically* unstable to scalar fluctuations

o =0

a}zccb(l) + (w? = V) =0 Spherical symmetry

With reflective (Brown-Henneaux) boundary conditions

Time

0 Q)
o) = ZAne_imnten(x)
n=0

a)L% = (B3n+ 1)

Bizon+ (2011-)

The sum of 2 frequencies is also in the spectrum!! Dias+ (2012+)
5/21 Buchel+ (2013)



Instability of anti-de-Sitter

Back-reaction on the metric is not dynamical

ds? = sec? x(—Ae‘25dt2 + A-1dx? + sin? xdg22)

Bizon+ (2011-)
Dias+ (2012+)
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Instability of anti-de-Sitter

Back-reaction on the metric is not dynamical

ds? = sec? x(—Ae‘25dt2 + A~ ldx? + sin? xdﬂz)

axA(Z) = f(®V, )
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Instability of anti-de-Sitter

Back-reaction on the metric is not dynamical

ds? = sec? x(—Ae‘25dt2 + A-1dx? + sin? xdgz2)

axA(2) = f(®D), W)
ax5(2) = f(®D, )

IT(t,0)

To third order...

0°D0) + (0? — V)OO = (@D, AP, 53)) ~ o=t

10°
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Bizon+ (2011-)

AdS unstable towards Kerr AdS Dias+ (2012+)
6/21 Buchel+ (2013)



Trapped waves

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?
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Trapped waves

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?
Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Trapped, long-lived modes were conjectured to lead to a non-linear instability
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Trapped waves

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?
Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Trapped, long-lived modes were conjectured to lead to a non-linear instability
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Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?
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Trapped, long-lived modes were conjectured to lead to a non-linear instability
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Trapped waves

Kerr-AdS traps radiation between the centrifugal barrier & AdS boundary — is it stable?

Similar behaviour in BH mimickers, or black compact objects in higher dimensions

Turbulence? Yes

Instability? Unlikely

Keir (2013) ‘

Trapped, long-lived modes were conjectured to lead to a non-linear instability
Cardoso+ (2014+)
Cunha+ (2019)
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Near-extremal Black Holes

Near-extremal black holes also have long-lived modes

Hints towards turbulent behaviour in this regime—third order couplings important

ho 22, | Py
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Yang+ (2015)
luliano (2024) 8/21



Ilﬁpinors and BH Perturbations Parasite (71 %) 2023, Bong Joon Ho (2ES)



Spinor Formulation of GR

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism A(1,3) ~ SL2,O0)/{1 ~ -1}
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Spinor Formulation of GR

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism

Metric

NP tetrad

Curvature

Algebraic classification

Penrose (1960)

R = 24A

A(1,3) ~ SL2,C)/{1 ~ — 1}
8ab = €ABCA'B’
{la, na, ma} — {OAOA,, lAlA’, OAZA’}

Sap = Ry — ZRgab = —2Q,p,p

_ o (1D).(2),.(3),.(4
Yincp = K((A)Klg )Ké )Kl()))

9/21
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Spinor Formulation of GR

Lorentzian manifolds in 4 dimensions admit a spin structure

Isomorphism A(1,3) ~ SL2,C)/{1 ~ -1}
Metric Eab = €ABCA'B’
NP tetrad {14 n% m*} = {o%0?, 1'%, oM
Curvature R = 24A S, =R, — ZRgab = — 2@, 5,5 Crca="Yipcp€ap€op +C.C.
Algebraic classification Yincp = K&)Kg)Kg’)Kg;)
Type | Type Il Type D Type Il Type N

Penrose (1960) 9/21



Teukolsky Equation in a Nutshell

Bianchi identities in spinor form are just VAA"PABCD = 0.

Penrose (1960)
Stewart & Walker (1974)
Bini+ (2002) 10/21



Teukolsky Equation in a Nutshell

Bianchi identities in spinor form are just VAA"{’ABCD = 0.

Taking one more derivative, and commuting.... [I‘PABCD — 6W€4%TCD)EF

Penrose (1960)
Stewart & Walker (1974)
Bini+ (2002) 10/21



Teukolsky Equation in a Nutshell

Bianchi identities in spinor form are just VAA"{’ABCD = 0.

Taking one more derivative, and commuting.... [I‘PABCD — 6W€4%TCD)EF

Projecting with the spin dyad A1B814P x ... we find

@4?4 + @3‘1’3 + @2?2 — O

Penrose (1960)
Stewart & Walker (1974)
Bini+ (2002) 10/21



Teukolsky Equation in a Nutshell

Bianchi identities in spinor form are just VAA"{’ABCD = 0.

Taking one more derivative, and commuting.... [I‘PABCD — 6W€4%TCD)EF

Projecting with the spin dyad A1B814P x ... we find

@4?4 + @3‘1’3 + @2?2 — O

Where Oy = [P'P-080—(4p"+p" )P —pP'+ (47" +7) 8+ 70"+ 4pp’ — 477" — 21,
@3 — [4PK'~460"“4(5—2P) k' +4(T — 27) 0-,+10¢3]
O, = [—40'D +4k'0' —12k'7" +12p0"]

Penrose (1960)
Stewart & Walker (1974)
Bini+ (2002) 10/21



Teukolsky Equation in a Nutshell

Bianchi identities in spinor form are just VAA"PABCD = 0.

Taking one more derivative, and commuting.... [I‘PABCD — 6‘P€4F}3‘PCD)EF

ABCDX.

Projecting with the spin dyad 11711 .. we find

@4?4 + @3‘1’3 + @2?2 — O

Where Oy = [P’P-08'0—(4p'+p )P —pP’ + (47" +T) 0+ 718"+ 4pp’ — 417" — 24, ]
@3=[}g—-—/ %K+4 21) o' + 104r,]
@2 — f e +12/f

BH —>Type D —>YVY; =Y, =k=0=k"=0"=0
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Teukolsky Equation in a Nutshell

Bianchi identities in spinor form are just VAA"{’ABCD = 0.

Taking one more derivative, and commuting.... [I‘PABCD — 6W€4%TCD)EF

Projecting with the spin dyad A1B814P x ... we find

@4?4 + @3‘1’3 + @2?2 — O

Hence, linearising on type D leads to

Penrose (1960)
Stewart & Walker (1974)
Bini+ (2002) 10/21
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Beyond linear order

Taking the second order variation of O,%Y, 4+ 0,%¥; + O,%, = 0 leads to
0,6*°¥, = — 60,6¥, — 60,6¥, = $[5g, 5¢g]

It is not sufficient to know o0¥,, but we need to reconstruct og
This is easy in vacuum (CCK, Wald...)

This is not so easy in the presence of matter (but there’s been recent progress!)

Kegeles & Cohen (1979)

Chrzanowski (1976)

Wald (1978)

Aksteiner, Andersson & Backdahl (2016)

Green, Hollands & Zimermann (2019) 11/21



V. Quadratic QNMs

Oldboy (== 03, Park Chan-Wook (HF3+=r)



Teukolsky Master Equation

Solution to linear equation 0,6%,=0

SWy= Y e ) 4
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Black Hole Ringdown

Coupling coefficients depend only on (M, J)
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Black Hole Ringdown

Coupling coefficients depend only on (M, J)
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Plane waves in gravity

Recall that the curvature satisfies a nonlinear wave equation
_ EF
L] \PABCD — 6‘IJ(AB\PCD)EF

pp-waves are exact solutions where the RHS vanishes!

L] ‘PABCD =0

Plane waves are pp-waves which are symmetric

ds* = 2dudv — Hu),,7'z’du* — dx* — dy*, = (x,y)

Penrose (1965) 14/21



Zooming into a geodesic

Choosing coordinates adapted to a null geodesic, and zooming in, spacetime
becomes a plane wave
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Choosing coordinates adapted to a null geodesic, and zooming in, spacetime
becomes a plane wave

ds* = 2dudv — R, (u)z'z’'du* — dx* — dy”

y(u)

Doing so at the (equatorial) light ring, we find an homogeneous plane wave
2 2 2 2 2 2 2
ds” = 2dudy — Q7 . (y* — x7)du” — dx= — dy

Penrose (1965)
Blau (2011) 15/21



QNMs from plane waves

Linear perturbations around homogeneous plane wave
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QNMs from plane waves
Linear perturbations around homogeneous plane wave
ds* = 2dudv — Q ,(y* — x*)du* — dx* — dy*+ ¢ ,,dx"dx"

The previous derivation holds for ¥, (aligned with the repeated PND)

Solutions are analytical:

o o _ 2 2_. 2 -
5P, = e~ Pite=iP eI |12 iy )an<\/Q\pv\x>Hny(\/—lvay>
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QNMs from plane waves

5P, = e~ Pite~P: e—|PV|QZ/2(x2_iy2)an(\/ Q|p,| x)Hny<\/ —iQpVy)

Impose boundary conditions:
« Periodic in the x direction
Y « Unstable in the y direction

. | |
Q7 'p, =n A > Il<n +—>

ldentify the frequencies of a Kerr BH in the high frequency limit

Py = Oppp P, =mQ,n.=¢—|m|,n,=n
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QQNMs from plane waves

Carry the same calculation up to second order, 0,6°%, = §[dg, g]
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Carry the same calculation up to second order, 0,6°%, = §[dg, g]

Vacuum solution—can use CCK to reconstruct the metric

5g = ST[W,] where O, =0

Teukolsky—Starobinsky identities in (homogeneous) plane waves

U, = —%aip‘l—i\i;H (i=0,....4)

bmalél—m\ijn _ b4_n6,n¢’4—m | (O < m,n < 4)
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QQNMs from plane waves

Carry the same calculation up to second order, 0,6°%, = §[dg, g]

Vacuum solution—can use CCK to reconstruct the metric

5g = ST[W,] where O, =0
Teukolsky—Starobinsky identities in (homogeneous) plane waves
U, = —%aip‘l—i\i;,{ (i=0,...4)
b4 ™W,, = pr "y ., (0<m,n <4)

Source term given uniquely in terms of Hertz potential
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QQNMs from plane waves

Particular solution to the 2nd order Teukolsky equation can be found analytically!

0,6°¥, = S[5g, 5¢]
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QQNMs from plane waves

Particular solution to the 2nd order Teukolsky equation can be found analytically!
06", = S[8g. 6¢]
Fix a geodesic + radiation gauge — 52‘PO invariant up to second order

52‘PO is well-defined, and measures curvature fluctuations at the lightring!

5y = (P hhom. + ), AhoWis A= (Ppppanen)
Ay, A
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QQNMs from plane waves

Particular solution to the 2nd order Teukolsky equation can be found analytically!
06", = S[8g. 6¢]
Fix a geodesic + radiation gauge — 52‘PO invariant up to second order

52‘PO is well-defined, and measures curvature fluctuations at the lightring!

5y = (P hhom. + ), AhoWis A= (Ppppanen)
Ay, A

Define coupling coefficients / nonlinear ratios (at the lightring)
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QQNMs from plane waves

Ratios can be computed analytically! Stay tuned for results
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Conclusions

ol Studying the back-reaction of perturbations is important in a number of contexts
ol Important theoretical & mathematical consequences (stability of AdS, Kerr...)

¢ Non-linear dynamical effects will be observed (SIGW, QQNMS, memory...)

* New methods are needed to push beyond vacuum second order

¢ Type N (Homogeneous plane waves) might shed light on high frequency GWs

¢ Ultimate goal: Black Hole spacetimes + realistic matter fields
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