Gravitational Waves from Viscous Stars
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The Standard Model is Nnot the end

Do we understand matter beyond nuclear density?

Neutron Stars
[This is ereaper]
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Necutron Stars are layered

Neutron Stars probe matter at different scales

[like pizza, NS come
Crust + in different styles]
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We Observe Necutron Stars with telescopes...

NICER: Mass (5%-level) + Radius (5-20%-level)

Mass can be better constrained including radio measurements!
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= and with Gravitational Waves...
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= @and we will observe many more!

CE/ET will see
ALL bDNS
N
The
Universe

[if they are built]
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Viscosity: why, oh why?

EM emission

GW emission




Viscosity: why, oh
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Inspiral

[Can hyperons
heat-up enough?]
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Hydrodynamics is an EFT

Integrate out dof up to a scale @(z/”glfp)

Thermodynamic variables:
/ = trexp [ﬂ(uaP“ +,uN)] . p=T"1
Unique rank-2, symmetric tensor:

I,=e¢euu +pA_  , J =nu,

A
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First=-Order EFT gives Viscosity (1)

Let’s keep O(Z,¢,): gradient expansion

fp
|V X < [ X/ 5|

Unique rank-2, symmetric tensor:

T = (& + &V, + (p + PO, + 2,60 + T

J,=m+ /Dy, + 7

Constitutive Relations:

IV =NV e,V n,V u’
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First=-Order EFT gives Viscosity (1)

Look at the entropy current:
TS = pu® — T%u, — uJ°
A straightforward calculation gives

V §%= 0O(V?)

[This better be
non-negative]
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First=-Order Hydro is Unstable

Hiscock & Lindblom [1985]:
“Any first-order theory
satisfying V,S“>0 1s unstable”

“These results provide overwhelming motivation (we
believe) for abandoning these theories in favor of the

second-order (Israel) theories which are free of these
difficulties.”

BDN [2017-19 ], Kovtun [2019]:
What if V89> 0+ O(V>) ?
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What is a frame, and why does it matter?

Suppose we do a field redefinition
e = e+ au”V g, then:

gD - &V +au’V e+ O(V?).

Physically we did nothing

But the equations change!

[Some equations are in Santa’s good list,
Some are not]

(For relativists: ADM vs BSSN/CZ4/GHG formulations of GR)
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There is a zoo of frames




BDNK Frame has 6 Transport Coefficients

sV =M@ [u“ V e+ (€ +p)8]
P = _[E&9 + 7, [u“ V e+ (€ +p)&]
Q\) = (e + pu’vV,u, +BA,, Ve +BIA , Von

A

[These two are not independent]

1
ggb) — = 27]651[9

N =0
Causality implies a number of

1 . L ..
fé) =0 inequalities between these coefficients
[BDNK ~ generalized Eckart]
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BDNIK Frame may “"be holographic”

Ciambelli & Lehner (2023)

1st-order in gradient expansion for boosted black brane in aAdS

Require horizon location to be fixed & £, || u, at the horizon

Then, AdS boundary fluid is (conformal) BDNK!

%-I—
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Shaken, not stirred

: JRY (2024)
Let us perturb a viscous star!

Sab = gczb + €hab Tab — Lgp T Gtab

Static + Spherical Symmetry:

0.8

g dx%dx’ = — evdt” + e*dr® + r°dQ?, : ‘
0.6 - e”/zs
_ U2 —m/Ms /
u“ = e’ (at)a 04 —p/pe /

— w /()
=(-7)
e = 1—— 0.2
r
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Different Parities don‘t talk to each other

_ _ JRY (2024)
Spherical Symmetry: SO(3) — Tensor Harmonics
ax1a1 polar _ axial polar

By = h 4+ P fap = 13508 4 1P

paxial _ 0 0 Xy mX, polar _ sym My 0 ’ Y,
sym sym 0 0 ab sym Ssym r’K 0 .
sym sym 0 0 sym sym O r’Ksin’@

(29 > Su, = (0,0,6X,, fX ) (PO > Se, Su, = (..., yZ, aZy, aZy)

There is a geometric (2x2), gauge-invariant version of this story
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Two Wave Equations Rule Axial Perturbations

JRY (2024)

Outside the star, this is just the Regge-Wheeler equation

‘w-modes] =0y + 07, w— Vi = 16ane”* (0 + Ap)
d
[7-modes] —TQﬁtztﬁ + ,,*,,*ﬁ L1 f] + L,|y]
ETP

For a perfect fluid, this equation is not dynamical!

Axial + polar eqs are causal iff BDNK Causality Constraints

[Please ask if you want to see the polar equations.

It’s not pretty]
23



Viscous Stars Absorb GWs (1)

AOUt —Ilr 10)4
W~ A; e *+ A e

Boyanov, Cardoso, Kokkotas & JRY (2024)
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Viscous Stars Absorb GWs (Il)

Boyanov, Cardoso, Kokkotas & JRY (2024)
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w=modes are affected by viscosity

Boyanov, Cardoso, Kokkotas & JRY (2024)
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w=modes arec affected by viscosity !

on-going: exact w-modes, generic (cold) EoS

Sofia Bussieres
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Rotating viscous stars amplify (some) GWs

JRY & Cardoso (2025)
g dx%dx? = — e’dt* + e*dr? + r’dQ?* — 2r*wsin® Odtdg

u=e""*(d,+ Qo)

To linear order in £, we can treat the purely axial sector.

['w-modes] —0t2tl/f+ 0 w— Vi = 167me”/2(dtl//+A,B)

[ e

[7-modes]

r*r*ﬂ Li[p] + L,y
ETP
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Rotating viscous stars amplify (some) GWs

JRY & Cardoso (2025)
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Why?
JRY & Cardoso (2025)

Let us throw a wave packet of frequency @, anqular
momentum m, and power P towards the star

NS

E=ZPdw, J= 7= Pdw §
0

In the co-rotating frame

dE, = dE — QdJ = dE(1 — mQ/ w)
e N

So the entropy increase is

. @ — mg
S=——7Pdw > 0
ol

.

30 Brito, Cardoso, Pani (2015)



Why should I care?

JRY & Cardoso (2025)

If there is a transition to a quark core: g-modes

» f-mode: f~kHz, damping ~ 100ms
w-mode: f~ 10kHz, damping~o0.01ms
g-mode: f~20Hz, damping~years

{ g-modes can be unstable: spin-down to Q < f.
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Radial Modes are damped by viscosity

Radial perturbations in the Eckart frame
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Radial Modes are damped by viscosity

Radial perturbations in the Eckart frame
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Remind you of something?

Radial stellar modes: Non-relativistic bubble modes:
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Let's address the clephant in the room...

=4 "‘

- B9 “' 11 ',' ‘/ !
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> Ly 7/
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the moustache

is only temporary!

NIELS BOHR INSTI
1920

Donate now to

support men's
health!
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Take-aways

(i) Neutron Stars are a unique probe of dense matter

(ii) Hence, GWs are a unique probe of dense matter

(iii) Viscous effects distinquish hyperons / quarks

(iv) BDNK is a good theory to include viscous effects

(v) We can now study perturbations of BDNK stars

(vi) Viscous stars absorb high-frequency GWs (tidal heating)
(vii) Viscous stars are superradiant: g-mode instabilities?

(viii) Asteroseismology may constrain transport coefficients!!!

[ask me about black hole
38 ringdown & nonlinearities]



